Available online at www.sciencedirect.com
IITEIIITIOIAL HIUIIIL OF

science (g)oinscTe SOLIDS a
@ STHIIGTUHES

www.elsevier.com/locate/ijsolstr

EILSEVIER International Journal of Solids and Structures 42 (2005) 23992416

Efficient boundary element analysis of cracks
in 2D piezoelectric structures

Ulrich Groh, Meinhard Kuna *

Technische Universitdt Bergakademie Freiberg, Institute of Mechanics and Fluid Dynamics, Lampadiusstrafie 4,
D-09596 Freiberg, Germany

Received 15 October 2003; received in revised form 20 September 2004
Available online 2 November 2004

Abstract

This study deals with the computation of intensity factors for cracks in two-dimensional piezoelectric solids under
static electromechanical loading. A direct collocation boundary element code with subdomain technique is developed,
whereby the fundamental solutions are computed by a fast numerical algorithm applying Fourier series. Linear bound-
ary conditions can be prescribed in a very general form in different coordinate systems. The discretization of the bound-
ary contours is performed by quadratic isoparametric elements. Directly at the crack tips discontinuous quarter-point
elements are used to model the typical behavior of the near tip solution with high accuracy, especially the 1//r-singu-
larity of stresses and electric displacements. In order to demonstrate and to verify the accuracy of the method, the elec-
tromechanical Griffith crack is analysed under mixed mode loading (I + IV and II + IV) situations. Furthermore the
analysis of a crack in a bi-material composite of PZT/Epoxy resin is presented as a practical example and the analysis
of a kinked crack as a non-straight crack example.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Piezoelectric ceramics serving as sensors or actuators have numerous applications in many technological
areas such as electronics, micro system technology, mechatronics or adaptive structures. For the assessment
of strength and reliability of piezoceramic structures under combined electrical and mechanical loading, the
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field intensity factors play an important role as fracture quantities. Three stress intensity factors Ky, Ky, K
and the electric displacement intensity factor Ky characterize the singularity of the mechanical and electri-
cal fields at crack tips. The state-of-the-art of linear electromechanical fracture mechanics is documented
e.g. in the book of Qin (2001).

To compute the intensity factors requires the solution of the coupled linear electromechanical boundary
value problem. Up to now for the numerical crack analysis in piezoelectric ceramics mostly the finite ele-
ment method (FEM) was used. Contributions of the authors to efficient FEM-techniques in this field can be
found in e.g. Kuna (1998), Abendroth et al. (2002) together with reference to further reading. However, the
boundary element method (BEM) has proved to be a very efficient and accurate tool for analysing linear
elastic crack problems. Its advantages compared with FEM are that the numerical discretization is re-
stricted to the boundary only and that the dependent field quantities (stresses, electric displacements) are
very accurately approximated inside the domain by fundamental solutions. For the BEM computation
of crack parameters in fracture mechanics the book of Aliabadi and Rooke (1991) provides a systematical
overview. In recent years research has been started to transfer these methods to piezoelectric fracture
mechanics, as well. Rajapakse and Xu (2001) presented fundamental solutions for straight impermeable
and conducting cracks and used numerical techniques known from elastostatics to compute crack param-
eters. Pan (1999) developed a displacement discontinuity approach to get a single domain BEM for crack
problems and employed the extrapolation of the extended relative crack displacements to calculate the K-
factors. Davi and Milazzo (2001) used the known subdomain method to formulate a multidomain BEM,
well suitable for crack problems by modeling the crack faces as boundaries of different subdomains.

The aim of the present work was the development of capable universal BEM-techniques to analyze arbi-
trary crack geometries in two-dimensional piezoelectric solids under any electromechanical boundary
conditions. For this purpose, the direct boundary element method was applied. To solve crack problems
in a very general form (heterogeneous media, curved cracks) and to compute the intensity factors the
multidomain approach was preferred. This paper describes the techniques used to get a very efficient
BEM code, including our further developments of the fast computation of the 2D fundamental solution
by Khutoryansky et al. (1998).

2. Basic equations

For static loading, a 2D piezoelectric solid in the bounded domain @ is described by the balance equa-
tions of forces and electric charges (1), the piezoelectric constitutive equations (2), (3) and the conditions (5)
on the boundary 09,

O-ij«,j+bi:07 i:l,2, Djj—wVZO, (1)
g11 U 0
on | =C Uzp +R' (q}’l >7 (2)
o12 Uy + sy 2
U
D ,
! = R uzz —K (p,l . (3)
D ,
p) %)
Uiy + Uy

Here 6, D;, u;, b; (i, j = 1,2) denote the components of the stress tensor, the electric and mechanical dis-
placements and the volume forces in a rectangular Cartesian x;,x,-coordinate system. ¢ is the electric
potential and wy is the volume charge. C, R, K are the matrices of the elastic, piezoelectric and dielectric
constants ¢, ¢, Ky,
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whereby RT means the transposed matrix of R. These coefficients characterize a transversely isotropic pie-
zoelectric material with the x,-axis being the poling direction. A generalized state of plane strain is as-
sumed, i.e. the displacements u;, u, only depend on the coordinates x;, x, and all strain components
&3 :%(u&,« +u;3) and the electric field E5 = —¢ 3 perpendicular to the plane are zero. Besides, n; and
t; = o;n; denote the components of the unit outward normal to 02 and of the traction vector, wg = —Dn;
is the surface charge density on 0Q2. Simple boundary conditions prescribe u; or ¢; and ¢ or ws on corre-
sponding pjgrts of 9Q. The following matrix notation is used with the differential operators 9; = 0/0x;,
Vi=1(010,)

Ui hH b
X1
X = ( ); d = u |, p= 1) ) f = by ;
X2 - -
® —ws —y
o1l J 0 0
(o)) _ C RT 0 82 0
§ = a12 ) C= ) B(vx) = a2 al 0

D, 0 0 81
D, 0 0 8

Putting the constitutive Egs. (2) and (3) in the balance equations (1) results in the following second order
matrix differential equation

L(V.)d(x) = —B"(V.)CB(V.)d(x) = £ (x). )

Subsequently, zero body forces and volume charges are assumed: /= 0.

Boundary conditions are given in the very general form (5), which linearly transforms the six physical
unknowns uy, u,, @, t, t,, —wg into three associated unknowns vy, v,, v3 reducing in this way the number
of unknowns by three

px)
with a(x) € R®?, Bx) € RS, u(x) € R*, rank « = 3.

(g@)) — a(0)o(x) + B(x), x € 0Q, .

This form standardizes the incorporation of different conditions into the boundary integral method. The
conditions (5) are equivalent to three independent linear conditions between the six physical unknowns. The
matrices o, f may be chosen differently on different parts of 0Q. Of course, the user has to ensure the phys-
ical correctness of the posed conditions. In order not to overdetermine the degrees of freedom on the
boundary, the restriction ranka;>1, i = 1,2,3 is necessary. Here «; are the submatrices of o consisting of
the rows i and i+ 3.

For example the second kind mechanical boundary conditions # (x) = 7,(x), t>(x) = #:(x) together with
the first kind electrical boundary condition ¢(x) = @(x) are represented by Eq. (5) as
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1 0 0 0
01 0 0
— ui (x)
a(x) = g 8 ?) , Plx) = ZE;C; , that means u(x) = uy(x)
000 B (%) —os(x)
0 0 1 0

Around crack tips in a homogeneous piezoelectric material the asymptotic behavior of the mechanical
and electrical fields is characterized by a singular near tip solution, see Pak (1992), which has the following
form in polar coordinates

o;(r,0) = \}; [Klfg.(O) +K”fi}1(0) +K1vf,-§v(0) ,
D,(r,0) = %[- w0 = A () = Vil -,

The angular functions f[}., ... and analogous functions in the [- - -]-brackets depend only on the material
constants. The coefficients Ki, Kiy and Kpy are the well known field intensity factors, which can be computed
by taking the limit of the generalized tractions at the ligament 0 =0 ahead of the crack tip where the
positive x;-axis corresponds to the radius § =0

Ky 021 ty
K=\ K; | = lin& V2| 62 = ljng V2nr| b ) (6)
Ky Dy /o0 —Ws / o=0

3. Fundamental solution and direct boundary integral method

Let G(y,x) € R¥ be the fundamental solution of the plane piezoelectric field problem (4) at the position
x for concentrated loads (forces and charge) in the source point y and let 7(y,x) € R*** be the matrix of the
corresponding tractions on a plane with the unit normal vector n = n(x)

G(y,x) : L(V,)G" (v,x) = 0(y — )1,
r T (7)
T(r,%) i (TaTaTw)" = p(dn) = p((GnGaGs)",n).
Here 6(x) and I denote the Dirac J-functional and the identity matrix, respectively. Furthermore, let M
and J be the functions
M(y,x) = CB(V,)G(y,x) € R, (8)
J(y,x) = CB(V,)T(y,x) € R, 9)

Using the fundamental solution and the electromechanical analogue to Betti’s reciprocity theorem,
representation formulas (10), (11) and boundary integral equations (12), (13) can be derived in the usual
way like in elastostatics. So it holds

CO)d) = — / TO.)ddr + / Gl dr, £ 20 (10)
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“0)S0) = — / 03T+ / M(p(x)dT, 00 (11)
“)d(y) + ][mw, x)d(x)dr, - / Gl )p(x)dT, =0,y € 00, (12)
ﬁ T00)(d) - d0) T - / Glpdr =0, yeon, (13)

whereby the boundary coefficients %(y) € R*? equal the identity matrix / inside of Q, the zero matrix O
outside of 0Q and 17, if y is a smoothness pomt of 0Q. The classical boundary integral equation (12) con-
tains a Cauchy pr1n01pal value because of the r~'-singular kernel 7, while the so called regularized equation
(13) only contains the improper integral with the In r-singular kernel G (here r, 6 are the polar coordinates
of y — x). For that reason, Eq. (13) will be used for the boundary element method in the present work.

To compute the fundamental solution, a fast numerical algorithm by Khutoryansky et al. (1998) is
applied using some few terms of the fast converging Fourier series

Gy(y,x) —a lnr+Z( cosZk9+b s1n2k0).

In the derived series representations the matrix series coefficients depend only on the material data and
so they have to be computed only once per material. The cos2k0, sin2k6, cos(2k + 1)0, sin(2k + 1)0-terms
can be computed together by recurrence formulas with nine arithmetic operations (Khutoryansky et al.,
1998). The series coefficients have the following integral form with the polynomial coefficients depending
on the material data

ay = /gz,()COSZkldf, bgf)z/ g,;(1) sin 2kt dt,
0

polynomial ... (cost, sin )
i/( ) = .
ij

polynomial ... (cost, sin )

Khutoryansky et al. (1998) evaluated these integrals directly, whereas the authors preferred to compute
them by numerical integration. Because of the oscillations of the integrands increasing with k, an adaptive
Romberg quadrature and a multiple Gauss quadrature have been compared. The multiple Gauss quadra-
ture agrees with the computation of a,] , fjk ) by applying the same Gauss quadrature for every of 2k partial
intervals of [0, 7] and turned out to be more efficient than the Romberg algorithm. Using the series up to
k=25,...,8, it provides good results for standard piezoelectric material. For about & = 12 the precision
of DOUBLE PRECISION-computations is exhausted, more series terms make no sense.

Using the series coefficients of G, the authors have derived the coefficients of T and the representations
of the kernels M, J following the definitions (7)—(9). After longer derivations and calculations it can be
found

alV = —(a;; @ +a§})), al(;.{l) = k — (k+ 1) (k)

apy = —b), alh = — (kb + (k+ 1)b k“)

bllol - _bfll ’ bl/l kb (k + l)b k+1)7
by = —ay' +ay', by =kaj + (k+Dag™", k>0,

T T
A(K) (k) A(k) (k) ~(K) —= k K (k L) Ak
(01(11 al(zz a2 al(31 a(32> C( a1 afz% afl; "‘a,(z; afﬁ afs%) ) aflz = dpys
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\:Ir—'

(k) b

My(y,x) a; A’(LI)
Ma(y,x) | & Agz) b
My(y,x) | =—= ) | cos2k+1)0+ | 51 | sin(2k+1)6,
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S) AK) AR ) A NT 4® o \T
( 1l A2jl A3j1 A4jl ASjl) = C( 1511 2,12 1]12 +A2,11 3/11 A(3j12> )
1 & 2\ /A k) A (k) .
Jyn) =5 > (0) > (4 cos 2k0 + By sin 2k0).
k=1

The expense of computing the kernels can be halved since the Fourier series are pure sine- and cosine-
series depending on the indices. For the non-logarithmic part of kernel G, for M;; and in the decomposi-

tions Ty = m T}, + nlej,J = niJ}; + noJ7, for the parts T}, J; the followmg class1ﬁcat10n is valid: (here OJ

stands for pure cosine- and W for pure sine-series in G, TU,M,,,J and vice versa in lej,JZ)

O m .

O m = O m =

Gy Ty (W O O, MyJ,:|® O O
OO0 OO0
O =

In addition, the series representation of 7{(y,x) also permits to compute the boundary coefficients %(y)
directly by calculating the limit in the definition of the boundary coefficients, where S,(y) is a circumference
of radius ¢ around y,

%(y) = lim T(y,x)dl, € R¥3,  y € 0Q. (14)

=0 Js.()na

With the angles 0?, 02 of the tangent vectors to 0Q2 in y (behind and before y, directed away from y,
measured to the x;-axis) it holds

O 00 11 .
Cu(y) = (afjl + bz(:);) 3 Z ; e { (ijkz)l - Bg'?z) [sin 2k0]2% + (A1<1k2)1 _Ax(]12> [cos 2k0} }

4. Discretization

In order to treat domains 2 either containing cracks or consisting of dissimilar homogeneous material
regions Q,, the subdomain method is implemented for
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ns
Q:Lﬂ% QNQ =0 for s#t (Q=QUQ,...).
s=1

The boundary element method is applied to every Q; and the solutions for different regions are coupled
on the corresponding adjacent boundaries by conditions expressing the continuity of 4 and the balance of p

d=d', p +p=0
Q can be multiple connected, inner and outer cracks are possible, but all Q; have to be simply connected
and must not contain cracks. They may have an own material coordinate system to represent the piezoe-

lectric constitutive equations for different poling directions in the form (2), (3). The boundaries 02, consist
of a finite number of smooth oriented finite contours C; without double-points

<(t

Ef@:(ﬁ“),remm
x5(1)

The direct BEM is implemented as a collocation method for the regularized equation (13), using collo-

cation points and interpolation nodes for & and p shifted back from the ends of the contours C;, see Fig. 1.
The boundary elements {x°, d°,p¢} are exclusively 3-noded-clements

(=D EWD), NMi=giE-1), Ny=1-8 Ny=3E+1)

1=

3 3
d°(&) =Y dINJ(©), p&) =D pINNE), el-1,+1]

In the inner elements of the contours this interpolation of d, p is chosen as continuous quadratic
(NY = N;, N = N,). At the ends of the contours the shape functions are in general discontinuous quadratic
due to the shifted nodes, but also of the Lagrange type (N¢ = N;, N} = N,),

o {e-¢) oo E=a)e-8) o (D)
e -y & TTEE -
The three interpolation nodes are located at x%(¢),& = ¢, 0, ¢, whereby &7, ¢' depend on the element
position on the contour

begin: & = —A " =41, end: & =1, = +A.

The shift parameter A € (0,1) is chosen practically near 1.
The length of the elements along the contour can be distributed either uniformly or geometrically
condensed towards one end of the contour depending on the expected behavior of the solution.

triple node Cs

O — geometry node
e — collocation point
C;— contour

Cy

Fig. 1. Geometry nodes and collocation points at the contour ends.
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Special crack tip elements are used at the ends of the contours, known as quarter-point elements from
BEM-modeling of cracks in elastic materials, see the overview in Aliabadi and Rooke (1991). These are
straight but quadratic elements having the mid-side node x°* in the quarter point position towards the crack
tip as illustrated in Fig. 2.

The isoparametric mapping provides a parametric behavior according to

%(1 &)~ 0 (15)

for the tip located in & = F 1. The (discontinuous) quadratic Lagrange interpolation of d at these elements
3
d(&) = dNi(9)
=1
includes the typical parabolic behavior along the crack faces because the relation (15) results in a
representation
& = ay + a5 + ayr.
The same interpolation is used for p at the crack faces, which also includes the linear interpolation,
P° = by + b + byr' (regular crack tip elements).

To realize the singular behavior of p at the ligament ahead of the crack tip, the discontinuous quadratic
interpolants are extended by the factor (1 & &)~! of relation (15)

: 113& 51 ¥ - +
PO=3 P70, G=¢, 6=0 &=¢" (16)
I=1
This yields

P =cor " + ¢ + ¢;*° (singular crack tip elements).

The shape functions
N E o
Ni(¢) = le(f)

contain the normalizing factor 1 4 ¢, to maintain the interpolation property

37 17 l:l7 .
Ni(&) = il=1273.

0, il

If the limiting process of relations (6) is carried out in the singular crack tip element e applying the above
shape functions (16) and assuming the coordinate system of relations (6), one gets the field intensity factors
expressed by the nodal quantities p¢’

| l l |

n

C|_©—©$.©—©_ 02

C; — contour

O - geometry node

19 3 e — collocation point,
| ., r node for d°, p°
regular e singular e

Fig. 2. Regular and singular discontinuous quarter-point elements at a crack tip.
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K =cy=7p" +707+ 70

with the coefficients

1-A 1 1-A
=V2nl——— =V2rl(1—— vy = V2nl ——.
1 nA( +A)7 72 TL( A)a V3 n1+A
Boundary conditions can be considered by the general form (5) using the global coordinate system
(x1,x) or the local normal-tangent coordinate system (7, 7).
The numerical integration on the boundary elements is performed by one of the so-called direct Gauss
quadratures. This formula exactly integrates polynomial-logarithm combinations of the form

Py(x) *xInx + Ps(x) x In |x —%| + Py(x) x In(1 — x) + P7(x)

on the interval [0, 1] (with P,—polynomial of degree n). It was given by Smith (2000) and works with 10
Gauss points.

5. Examples
5.1. Example 1: Electromechanical Griffith crack (uniaxial load)

The accuracy of the presented BEM was tested by computing the K-factors of an electromechanically
loaded crack in the plane. The geometric configuration and the loads are shown in Fig. 3, the poling axis
is oriented perpendicular to the crack. The piezoelectric material data for PZT-5H come from Pak (1992),
see the Appendix A.

The exact analytical solution for the crack in the infinite plane under far-field loads 653, 073, D5° was
given by Pak (1992).

Ky =0%vnra, Kp=o5vna, K =DYvna. (17)

In the first example only the factors K; and Kyy occur because of 675 = 0. For symmetry reasons only one
quarter of the plane needs to be modeled. This quarter is approximated by a square Q of side length b (with
b/a =10 and b/a = 100). The geometry of 3 and the boundary conditions can be seen in Fig. 4.

PAAA4 444ttt of5=100 MPa

********** D =0.1 C/m?
i)
2b
o
TPolarisat1011 Z: 1%) Ir?l ~ 00
2b

FFFFFFF+++
YYYv vy yvvty

Fig. 3. Electromechanically loaded Griffith crack in PZT-5H.
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t, = 100
. t, =0
Ms(0,b) ws = 01 o My(b,0)
u, =0 t,=0
tr=0 tr =0
442((17 O) Q T
]\/Il(Oa 0) t, = 0 Uy = 0 M3(b, O)
t.,. = 0 tT - 0

Fig. 4. Geometry (1/4 of the structure) and boundary conditions.

The discretizations of 02 consists of geometrically condensed elements towards the crack tip M, with a
pair of crack tip elements at M,. These different discretizations used 18 (G1-10), 63 (G2-10, G2-100) and
315 elements (G3-10, G3-100). In an analogous FEM computation by Kuna (1998), 330 biquadratic ele-
ments and special FEM crack tip elements around point M, were used. This FEM discretization is compa-
rable on 0Q2 with the BEM discretization G2-10. The K-factors obtained by BEM are given in Table 1.
Already for small numbers of elements a good agreement of BEM results with the exact values is achieved.
Better results cannot be reached by more (well distributed) elements however by reducing the truncation
error using a larger Q with b = 100.

In another test the BEM results for the electromechanical Griffith crack are compared with the exact
near field solution at the crack tip (Park and Sun, 1995, Kuna and Ricoeur, 2001). The crack configuration
is the same like in Fig. 3 with b/a = 10, but only mechanically loaded ¢35 = 1 MPa, D = 0C/m?. The mate-
rial data for BaTiO; stem from Kuna (1998), see the Appendix A. The very small two-element-contours
M3Mg and M;M |, are used to prescribe the rigid body displacements and a reference potential.

The subdomain method is used with a circular subdomain boundary around M, at r = R = 0.0001a,
discretized by 20 elements, see Fig. 5. At this internal boundary the comparison between BEM and exact
near field solution is made. Figs. 6 and 7 illustrate the stress o,9 and the electric displacement D, for a

Table 1

Intensity factors for the Griffith crack (uniaxial load, right crack tip)

Discretization Kix 1072 [MNm™ 4] Error [%] Ky x 107 [Cm™ Error [%]
Q:b=10m

GI1-10 1.78900 0.93 1.77884 0.36
G2-10 1.79227 1.12 1.78175 0.52
G3-10 1.79259 1.14 1.78206 0.54
FEM 1.80 0.80
Q: b =100m

G2-100 1.77012 0.13 1.77006 0.13
G3-100 1.77069 0.10 1.77058 0.11

Exact 1.77245 1.77245
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M;(0,10) M,(10,10)
Qs
R , .
20,00 | s /6 X0, 10,107
My(0,0) Mo\ 82 i 9
Mi; (10,1
'NXW,O) u(10,~107)
]
X Q4
Mi3(0, -10) Mi5(10, -10)

Fig. 5. Geometry, schematically, a = 1, R=10"*,

7N v

o

Stress [MPa]

\\-ﬁ‘[
0 90 180 270 360
Polar angle [degrees]

Fig. 6. Near tip stress 0,9 for x,-polarisation.

< 0.01 ™~

E

(@) phe

= 0.005 v \

(0]

: \

3 0

E \

o

K] \

O-

S 0.005 NS

g exact

w -0.01 Teg ) BEM ¢
0 90 180 270 360

Polar angle [degrees]

Fig. 7. Near tip electric displacement D, for x,-polarisation.

x»-polarisation. Figs. 8 and 9 show the electric potential ¢ for x;- and x,-polarisation. Other field variables
and configurations show the same very good agreement between BEM and closed form results.
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e><'act
0 age BEM e
= -2e-05
[ { \
/ \
5 -4e-05
o
S -6e-05
-8e-05
0 90 180 270 360

Polar angle [degrees]

Fig. 8. Near tip electric potential ¢ for x;-polarisation.

> exa'ct —
S 0.0001 b BEM e
s d
s
5
5 (0]
o
2 ; ;
3 /
o
10,0001 L

0 90 180 270 360
Polar angle [degrees]

Fig. 9. Near tip electric potential ¢ for x,-polarisation.

5.2. Example 2: Electromechanical Griffith crack (shear load)

In a second example of the straight electromechanical crack in the plane, the normal mechanical load
is replaced by a shear load. The far-field loadings are now a3 = 1 MPa, ¢35 = 0MPa, DY = 0.001 C/m?,
see Fig. 10. Here the non-zero factors Ky and Kyy occur with the exact values given again by Eq. (17).

— o5 =05y =7 =1 MPa

—————————— D3 = 0.001 C/m?

T2

2b
o

-

| TPolarisation
2b

++++++++++

~

—_
o =

HE
=
=

Sals]

~» 00

Fig. 10. Electromechanical Griffith crack under shear load.
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Table 2

Intensity factors for the Griffith crack (shear load, right crack tip)

Discretization Ky x 10* [MNm~¥?] Ky [MNm 2] Error [%] Ky % 10° [Cm™2] Error [%]
Q:b=10m

G-10 —6.49384 1.78388 0.64 1.77655 0.23

Q: h=100m

G-100 —9.00358 1.77032 0.12 1.76948 0.17
Exact 0.00000 1.77245 1.77245

There is no symmetry in the problem which could be used for the model. The domain Q is decomposed
into an upper and a lower subdomain with distinct boundaries on both sides of the crack. The boundaries
of all four quarters of the domain are discretized analogous to the quarter in example 1 (Fig. 4) excluding
the contours on the x,-axis. In the same way like in the first example geometrically condensed elements to-
wards the crack tips are used with triples of one singular and two regular crack tip elements at the tips. The
numbers of elements for the two discretizations G-10 (Q:5 = 10) and G-100 (£2:b = 100) are 362 and 342,
that means finer discretization than G2 and coarser discretization than G3 in example 1.

For the right crack tip singularity the K-factors obtained by BEM are given in Table 2. The same good
agreement of BEM results with the exact values is achieved like in example 1. It is worth noting that the
error is especially reduced by using the larger Q@ with b = 100. This means that the approximation of the
infinite domain size by a finite one is reflected by the BEM solution quite clearly, which underlines its high
accuracy. The intensity factors Ky, Kpv at the left crack tip have the same computed absolute values, Ky
has the opposite sign and Kj has the same minor error level like at the right crack tip.

The actual errors of the K-factors (not the error level) depend on the choice of the parameters of the
numerical procedures. For example, the results in the Table 2 are obtained having shifted the collocation
points from the contour ends (element parameter & = +1) into the position & = +0.9996. Changing this
position into ¢ = 40.99, the (signed) errors of Kjj, Kyv on the discretization G-100 change from —0.12%,
—0.17% to +0.01%, +0.14%.

5.3. Example 3: Crack perpendicular to an interface
In the next example the K-factors of a straight crack in a bimaterial structure are computed. A crack of

the length 2« is located in the piezoelectric zone perpendicular to the material interface in a distance 4 from
this interface, see Fig. 11. The K-factors ought to be computed for the distance / varying between 754 and

Pridbbbttts on=1MpPa
—————————— Ds® =0.001 C/m?

PZT ISO
T2
b
2b
2a. | h 1
a= 1m

P b =100 m

b b

FHF+++++++
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Fig. 11. Crack in PZT-5H perpendicular to a material interface.
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0.005a. The poling axis is directed perpendicular to the crack. PZT-5H was chosen again as piezoelectric
material. The second material is an isotropic elastic epoxy resin, which corresponds to the matrix material
in an adaptive laminate. All material data are given in the Appendix A The uniaxial electromechanical loa-
dings are directed perpendicular to the crack and parallel to the interface: o35 = 1MPa, ¢75 = 0MPa,
DY = 0.001 C/m>.

Because of the symmetry with respect to the xj-axis only the upper half is modeled by two subdomains of
different material. The boundaries are discretized by different discretizations with 199-248 elements depend-
ing on the parameter /4. In principle, around both crack tips geometrically condensed elements are used
again with pairs of crack tip elements at the tips. But the local variation of the element length should
not be too great because of local error reasons. So the varying distances / require different discretizations.
For large /, all boundaries of the subdomains lying not on the crack are discretized by 16 elements. For
small /1, the ligament directed to the interface has fine elements, which requires element condensation on
the neighboring parts of the subdomain boundary, too.

The computed behavior of the K-factors is presented in Figs. 12 and 13 in dependence on the normalized
mean distance from the interface. The results for Kj and Kyy differ from each other only by the factor 1000
and by different signs of Kyy in the right (+) and left (—) crack tip. Therefore, only the quantity Kj is pre-
sented for different ranges of 4. In the smaller range the differences between the K-factors of the right and
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Fig. 12. Intensity factor Kj, 0.005a < / < 2a.
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Fig. 13. Intensity factor Kj, 0.005a < h < 75a.
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the left crack tip can be observed, see Fig. 12. In the far range the different behavior of the K-factors for the
crack tip farther from the interface and near the interface can be neglected, see Fig. 13.

5.4. Example 4: Electromechanical kinked crack (electrical loading)

In the last example a non-straight crack problem is analysed. The K-factors of a kinked crack in the infi-
nite plain under electrical far-field load D5° are computed and compared with the analytical solution and
BEM results presented by Rajapakse and Xu (2001). The analytical solution for the K-factors is founded
on a theoretical analysis of branched cracks in piezoelectrics given by Xu and Rajapakse (2000). The
piezoelectric material data for PZT-4 stem from Park and Sun (1995), see the Appendix A.

The kinked crack model is shown in Fig. 14. A straight main crack of the length a continues into a
straight crack branch of the length ¢ = 0.254, deviating from the main crack by the angle . The poling axis
of the piezoelectric material is oriented perpendicular to the main crack. The electrical loading can be taken
e.g. DY = 1 C/m?. The side length of the embedding square is chosen relatively large (b >> a,c).

The square domain is decomposed into two subdomains 2;, 2, each containing on its boundary one
E@‘iﬁ face and the ligament contours MM, and M,;Ms, see Fig. 15. The discretization of the contours
MM consists of all together 46 elements (09;: 28 elements, 0Q,: 36 elements) including triples of regu-
lar/singular crack tip elements at M, and M. The elements are geometrically condensed towards the crack
tips both on the crack faces and on the common parts of the subdomain boundaries. The contours MM,
and M4M s consist of 8 and 6 elements, respectively. MsMg, MM, MoM 1y, M ;Mg consist of four and the
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Fig. 14. Kinked crack in PZT-4.
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Fig. 15. Geometry, schematically.



2414 U. Groh, M. Kuna | International Journal of Solids and Structures 42 (2005) 2399-2416

Table 3
Comparison of the K-factors at branch tip
o [Grad] Present study BEM Rajapakse/Xu Analytical solution
K1 /K% [10'N/C] Kiv /K Ki/KY% [10'N/C] Kiv/KY, Ki/KY, [10'N/C] Kiv/KY
30 0.100 1.059 0.09 1.00 0.10 1.05
40 0.232 1.010 0.21 0.94 0.22 1.00
50 0.457 0.950 0.40 0.88 0.44 0.94
60 0.791 0.878 0.71 0.82 0.75 0.87

remaining contours have two elements. MgMy and M oM, are used to fix the rigid body displacements/
rotation and the reference potential.

For distinct angles a the resulting K-factors Kj, Kyy at the branch tip M, are given in Table 3. This K-
factors are compared with the mentioned analytical solution and BEM results by Rajapakse and Xu (2001).
The latter have been computed with a two-domain boundary element method using 48 elements to model
each domain (quadratic elements, at the branch tip quarter-point elements). For Kj; corresponding results
are not given in the quoted study. The K-factors are normalized by the electric displacement intensity factor
for the main crack K%, = D¥/na/2 = 1.2533141 Cm™2,

As can be seen from Table 3, the results of the present study show a good agreement with the analytical
solution.

6. Conclusions

Based on the regularized direct boundary integral equation for piezoelectric continua, an efficient and
universal BEM code is developed to analyse 2D structures under arbitrary electromechanical loading.
Thanks to the implemented substructure/multidomain technique, heterogeneous structures can be treated,
consisting of piecewise homogeneous dissimilar piezoelectric, dielectric or elastic material. This enables typ-
ical applications in smart composites with integrated piezoelectric sensors or actuators. Boundary condi-
tions can be posed in a very general form.

Much attention is drawn to fast numerical computation of the fundamental solution and to highly accu-
rate numerical integration. To allow a future extension of the BEM code to compute the stress and electric
displacement fields at inner points of the domain, the corresponding matrix integral kernels have been
developed in Fourier series form. Index classifications are performed to halve the expense of computing
the kernels using pure sine- and cosine-series. Additionally, a formula is derived to compute the 2D bound-
ary coefficients %;;(y) of the Somigliana-identity in piezoelectric materials.

Most emphasis is devoted to model the singular behavior at crack tips and to calculate the field intensity
factors. For this purpose, special discontinuous crack tip elements are developed. The verification examples
have shown that the implemented BEM code represents an efficient software tool for computing 2D crack
problems in piezoelectric structures. Using a few boundary elements only, it permits to achieve a good accu-
racy in computing the field quantities around the crack tips. In particular, this BEM provides very accurate
field intensity factors, which are superior to comparable FEM analyses.
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Appendix A. Material data

The listed data are obtained from the 3D data of the quoted papers by transforming the poling axis from
X3 into x, and by restricting to the 2D case of plane strain.
BaTiO;z: (Kuna, 1998)

Ccl] = 166GPa, Cip = 77.5 GPa, Cyp = 162GP3, C33 = 44 .8 GPa,
e;3 =11.6C/m?, ey = —44C/m?, ey = 18.6C/m?

K = 14343pF/m, x5 = 16823 pF/m.
PZT-5H: (Pak, 1992)
Cl1 = 126GP3, Clp = 530GPa7 Cyp = 117GPa, C33 = 353 GPa,

e = 170C/m2, ey = —6.5C/m2, ey = 233 (:/11'127

k1 = 15100pF/m, ;5 = 13000 pF/m.
PZT-4: (Park and Sun, 1995)
ci1 = 139GPa, ¢, =743GPa, ¢y =113GPa, ¢33 =25.6GPa,

e|3 = 1344C/m2, e = —6.98(?/11127 €y = 1384C/m2,

K11 = 6000pF/m, Ky = 5470pF/m
Isotropic epoxy resin:
Cl] = Cxp = 8(}]?8.7 Clp = 44GPa, C33 = 18GPa,

(E = 4.87742GPa, v =0.35484),

€13 — €] = € — ()(:/I'[lz7 K1) = Kpp = 37pF/m
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